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Abstract: This paper presents a new approach to classify, index and retrieve technical
drawings by content. Our work uses spatial relationships, shape geometry and
high-dimensional indexing mechanisms to retrieve complex drawings from CAD databases.
This contrasts with conventional approaches which use mostly textual metadata. Creative
designers and draftspeople often re-use data from previous projects, publications and
libraries of ready-to-use components. Usually, retrieving these drawings is a slow, complex
and error-prone endeavour. Unfortunately, the widespread use of CAD systems, while
making it easier to create drawings, exacerbates this problem, insofar as the number of
projects grows enormously, without providing adequate searching mechanisms to support
retrieving these documents. We describe an approach that supports automatic indexation
of technical drawing databases through drawing simpli®cation, feature extraction and
e�cient algorithms to index large amounts of data. We describe in detail our classi®cation
process and present results from usability tests on our prototype.
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1 INTRODUCTION

Present-day CAD applications provide powerful tools to
create and edit vector drawings in several domains, such
as architecture, mechanics and the automobile or mould
industries. Even though reusing past drawings is
common practice in such domains, there are almost no
developed mechanisms to support this activity in an
automated manner. Thus, it becomes important to
develop new systems to support automatic classi®cation
and retrieval of technical drawings based on their
contents, rather than relying solely on textual
annotations or metadata for such purposes.

Some studies (Do, 1998) state that project libraries
with old case studies are crucial to help designers
identify relevant features to include or problems to
avoid in new designs. Additionally, in some design ®rms,
designers often work by making or copying diagrams
from colleagues in their design team for further

development (Do, 1995). Furthermore, during task
analysis performed in the context of ongoing research
projects (SmartSketches Project, 2000), in informal
conversations with draftspeople, we found out that
industrial designers often include elements from libraries
of ready-to-use components. Moreover, they also reuse
old drawings during the creation phase of a new project,
to get at ideas or review insights from previous problems
and their solutions.

Even though reusing drawings often saves time,
manually searching for them is usually slow and
problematic, requiring designers to browse through
large and deep ®le directories or to navigate a complex
maze of menus and dialogues for component libraries.
Moreover, CAD systems, while making the creation of
new drawings easier, exacerbate the retrieval problems,
because they do not provide adequate search
mechanisms. Indeed, present-day CAD systems rely on
conventional database queries and direct-manipulation
to retrieve information. Some solutions to this problem
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use textual databases to organise the information
(Bakergem, 1990; Clayton and Wiesenthal, 1991).
These classify drawings by keywords and additional
information, such as designer name, style, date of
creation/modi®cation and a textual description.
However, solutions based on textual queries are not
satisfactory, because they force the designers to know in
detail the meta-information used to characterise
drawings. Worse, these approaches also require
humans to produce such information when cataloguing
data. Moreover, textual description is not adequate to
describe layout, shape and topology (Goodrum, 2000),
su�ers from low term agreement across indexers
(Markey, 1988) and also between indexers and user
queries (Enser and McGregor, 1993; Selo�, 1990).

In contrast to the textual organisation, we propose a
visual classi®cation scheme based on shape geometry
and spatial relationships, which are better suited to this
problem, because they take advantage of designers
visual memory and explore their ability to sketch as a
query mechanism. These are combined with an indexing
method that e�ciently supports large sets of CAD data,
new schemes that allow us to hierarchically describe
®gures by level of detail and graph-based techniques to
compute descriptors for such drawings in a form
suitable for machine processing.

The rest of this paper is organised as follows: Section
2 provides an overview of related work in content-based
retrieval. In Section 3, we describe our approach for
content-based retrieval of visual information. Section 4
explains, in some detail, our automatic classi®cation
process. In Section 5, we present experimental results
from preliminary tests with users. While at the time of
this writing we are still conducting tests, the results
obtained so far are very encouraging and establish the
validity of our method. We conclude the paper by
discussing our conclusions and present directions for
further research.

2 RELATED WORK

Recently there has been considerable interest in
querying multimedia databases by content. However,
most such work has focused on image databases as
surveyed by Shi-Kuo Chang et al. (1999). Moreover, in
Rui et al. (1999), the author analyses several image
retrieval systems that use colour and texture as main
features to describe image content. On the other hand,
drawings in electronic format are represented in
structured form (vector graphics) that requires
di�erent approaches from image-based methods, which
resort to colour and texture as the main features to
describe image content. Some initial work (Bakergem,
1990; Clayton and Wiesenthal, 1991) attempted to index
technical drawings through textual databases. However,
these fail to use the rich visual association mechanisms
and designer's use of sketches to recover information.

Gross's Electronic Cocktail Napkin (Do, 1995;
Gross, 1995; Gross and Do, 1996) addressed a visual
retrieval scheme based on diagrams, to indexing
databases of architectural drawings. Users draw
sketches of buildings, which are compared with
annotations (diagrams), stored in a database and
manually produced by users. Even though this system
works well for small sets of drawings, the lack of
automatic indexation and classi®cation makes it di�cult
to scale the approach to large collections of drawings.

The S3 system (Berchtold and Kriegel, 1997) supports
managing and retrieving industrial CAD parts,
described using polygons and thematic attributes. It
retrieves parts using bi-dimensional contours drawn
using a graphical editor or sample parts stored in a
database. S3 relies exclusively on matching contours,
ignoring spatial relations and shape information,
making this method unsuitable for retrieving complex
multi-shape drawings.

Park and Um (1999) describe an approach to retrieve
mechanical parts based on the dominant shape. Objects
are described by recursively decomposing their shape
into a dominant shape, auxiliary components and their
spatial relationships. The small set of geometric
primitives and the not so e�cient matching algorithm
makes it hard to use with large databases of drawings.

MuÈ ller and Rigoll (1999) presented a novel approach
to the retrieval of engineering drawings based on the use
of stochastic models. Engineering drawing databases
can be searched using sketches or shapes which
represent details in drawings of mechanical parts. They
represent drawings and queries using a pseudo 2D
Hidden Markov Model with ®ller models. Their
approach aims to retrieve images containing certain
details and locate these details in the retrieved images.
Their method only allows specifying simple queries,
representing a single element. More complex queries,
including several elements with spatial relationships
between them, are not contemplated. Moreover, the
search mechanism is not appropriated for large
collections of drawings, since they perform a
sequential scan through the database comparing the
query with all indexed drawings.

Leung and Chen (2002a) proposed a sketch retrieval
method for general unstructured free-form hand-drawings
stored in the form of multiple strokes. They use shape
information from each stroke exploiting the geometric
relationship between multiple strokes for matching.
Their approach then computes a matching score
between the query and each sketch in the database.
More recently, the authors improved their system by
also considering spatial relationships between strokes
(Leung and Chen, 2002b). However, this approach has
two drawbacks. First, they use a small number of basic
shapes (circle, line and polygon) to classify strokes.
Second, their approach cannot deal with large databases
of drawings, since they compare the query with all the
drawings in the database.
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Nabil et al. (1996) presented a set of techniques for
similarity retrieval based on the 2D Projection Interval
Relationships representation (2D-PIR), including
methods for dealing with rotated and re¯ected images.
2D-PIR is a symbolic representation of directional as
well as topological relationships among spatial objects.
It adapts three existing representation formalisms and
combines them in a novel way to produce a uni®ed
representation of pictures. Authors claim that their
method o�ers more information about spatial
relationships between objects in a picture than
traditional methods. However, during the matching
process the symbolic representation of the query gets
compared to all the symbolic representations stored in
the database, making this work di�cult to scale up for
large collections of images.

Funkhouser et al. (2003) describe a method for
retrieving 3D shapes using sketched contours. However,
their approach relies on silhouettes and their ®tting to
projections of 3D images, unlike our method which is
based on structural matching of graphical constituents
using both shape and spatial relations.

Brucale et al. (2002) describe the use of size
functions to describe and search simple image datasets
using hand-sketches as queries. Size functions are a
relatively new class of shape descriptors, based on
geometric-topological theory of critical points.

Shock trees (Kimia et al., 1995) are another method
to describe and compare shapes. Pelillo et al. (1999)
presented a solution to matching two shock trees by
constructing the association graph. Authors illustrate
the power of this approach by matching articulated and
deformed shapes described by shock trees. Shokoufandeh
et al. (1999) developed another approach to perform
shock tree matching based on graph spectrum and
Voronoi diagrams. While these approaches use trees
(graphs) to describe the contour of simple shapes, we use
graphs to represent the spatial structure of complex
drawings.

More recently Bespalov et al. (2003) presented a
framework for shape matching through scale-space
decomposition of 3D models. Their algorithm is based
on e�cient hierarchical decomposition of metric data
using its spectral properties. 3D objects are mapped into
rooted trees, thus recasting the problem of ®nding a
match between 3D models as the much simpler
technique of comparing rooted trees

Looking at the majority of the existing content-based
retrieval systems for drawings or technical drawings, we
can observe two things. First, most published works use
databases with few elements (less than 100). Second,
drawings stored in the database are simple elements not
representing sets of real technical drawings.

We will describe our approach that improves on the
systems developed by Berchtold and Kriegel (1997) and
Park and Um (1999) systems, since we aim to retrieve
technical CAD drawings and privilege the use of spatial
relationships and dominant shapes. Indeed, our method

is more ambitious in the sense that we do automatic
simpli®cation, classi®cation and indexation of existing
drawings, to make the retrieval process both more
e�ective and accurate. These activities imply specifying a
description mechanism to describe technical drawings
and sketched queries. Additionally, fast and e�cient
algorithms to perform similarity matching between
sketched queries and a large database of technical
drawings are required, which we will describe in the
following sections.

3 OUR APPROACH TO CONTENT-BASED RETRIEVAL

Our approach solves these problems by developing a
mechanism for retrieving technical drawings, in
electronic format, through hand-sketched queries,
taking advantage of the designer's natural ability at
sketching and drawing. Moreover, our approach, unlike
the majority of systems cited in the previous section, was
developed to support large sets of drawings. To that
end, we developed a multidimensional indexing
structure that scales well with growing data set size.

Figure 1 presents a very detailed diagram of our
system architecture, identifying its main components,
which we describe in the next subsections.

3.1 Classification

Content-based retrieval of pictorial data, such as digital
images, drawings or graphics, uses features extracted
from the corresponding picture. Typically, two kinds of
features are used; visual features (such as colour, texture
and shape) and relationship features (topological and
spatial relationships among objects in a picture).
However, in the context of our work, vectorial
drawings, colour and texture are irrelevant features
and only topological relationships are considered to
make our approach less restrictive.

Our classi®cation process starts by applying a
simpli®cation step, where most useless shapes are
eliminated. Most technical drawings contain detailed
descriptions of objects, which are not necessary for a
visual search and increase the cost of searching. We try
to remove visual details (i.e. small-scale features) while
retaining the perceptually dominant elements and
shapes in a drawing. The main goal of this step is to
reduce the number of entities to analyse in subsequent
steps of the classi®cation process.

After simpli®cation we divide the drawing into
dominant blocks (polygons) that may also be divided
recursively into smaller blocks. This hierarchy of blocks
will be later used to extract shape and topological
information from the drawing. We only use two
topological relationships, Inclusion and Adjacency.
While these relationships are weakly discriminating,
they do not change with rotation and translation. After
this recursive decomposition we combine shape
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information and topological relationships into a
topology graph for later use in computing topological
descriptors. Figure 2 illustrates the two steps mentioned
before, polygon isolation and topological relationship
extraction (topology graph).

We do not store graphs in a database for the purpose
of searching similar drawings, since graph matching is
a Nondeterministic Polynomial time complete
(NP-complete) problem, we use graph spectra instead.
For each topology graph to be indexed in a database we
compute descriptors based on its spectrum (Cvetkovic
et al., 1997). To support subgraph matching, we also
compute descriptors for subgraphs of the main graph.
Moreover, we use a new multilevel description scheme
that divides drawings into di�erent levels of detail and
then computes descriptors at each level. Combining
descriptors from subgraphs and at di�erent levels of
detail, provides a powerful way to describe and search

both for complete drawings or subparts of these, a
desirable feature.

To compute the graph spectrum we start by
determining the eigenvalues of its adjacency matrix.
The resulting descriptors are multidimensional vectors,
whose dimension depends on graph (and its
corresponding drawing) complexity. Very complex
drawings will yield descriptors with high dimensions,
while simple drawings will result in descriptors with low
dimensions.

To acquire geometric information about drawings we
use a general shape recognition library able to identify a
set of geometric shapes and gestural commands called
CALI (Fonseca and Jorge, 2001). This enables us to use
either drawing data or sketches as input, which is a
desirable feature of our system, as we shall see later on.
In our approach, instead of using CALI to recognise a
shape or a gestural command from polygons, we

Figure 1 Detailed architecture for our approach

Figure 2 Polygon isolation (left) and correspondent topology graph (right)
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compute a set of geometric features such as area and
perimeter ratios from special polygons such as the
convex hull, the largest area triangle inscribed in the
convex hull or the smallest area enclosing rectangle
among others. Using geometric features, instead of
polygon classi®cations, allows us to index and store
potentially unlimited families of shapes. We obtain a
complete description of geometry in a drawing by
applying this method to each polygon of the drawing
and as a result we get a multidimensional feature vector
that describes its geometry. The geometry and topology
descriptors thus computed are inserted in two di�erent
indexing structures, one for topological information and
another for geometric information, respectively.

3.2 Query

Our system includes a Calligraphic Interface (Jorge, 1994)
to support the speci®cation of handsketched queries, to
supplement and overcome the limitations of conventional
textual methods. The query component performs the
same steps as the classi®cation process, namely
simpli®cation, polygon isolation, topological and
geometric feature extraction, topology graph creation
and descriptor computation. However, for topological
information, we only generate a descriptor for the whole
sketch, using it to query the topology indexing structure.
The geometry descriptors are used to re®ne the query
and select the more similar drawings from a list of
candidates returned by the topological query.

3.3 Indexing

Since we need to index most subgraphs of a given graph
to allow for subgraph matching, indexing hundreds to
thousands of technical drawings yields a large database
comprising tens of thousands or potentially hundreds
of thousands of descriptors. Thus, at the core of our
approach, we need to develop e�cient indexing
structures for storing descriptors. Such indexing
mechanisms should minimise the number of false
positives that have to be tested by a similarity search.
However, indexing should not discard any relevant
drawings. Good indexing methods should also be
dynamic, allowing online insertion and removal of
descriptors and should scale well with growing data set
sizes. Furthermore, the indexing structure should support
data points of variable dimension, since descriptors have
di�erent dimensions and we do not know in advance the
maximum dimension that they can achieve. To support

approximate matches, the indexing structure needs to
support a fast and reliable K nearest-neighbours
scheme, since most interesting candidates will probably
yield approximate matches to the query. However, a
nearest neighbour search in high-dimensional data
spaces is a di�cult problem.

We developed a new multidimensional indexing
structure, the NB-Tree (Fonseca and Jorge, 2003a,b),
that satis®es the requirements enumerated before,
providing us with an e�cient indexing mechanism for
high-dimensional data points of variable dimension. The
NB-Tree is a simple, yet e�cient indexing structure for
highdimensional data points of variable dimension,
using dimension reduction. It maps multidimensional
points to a 1D line by computing their Euclidean Norm.
In a second step, we sort these points using a B+-Tree
on which we perform all subsequent operations.
Moreover, we exploit B+-Tree e�cient sequential
search to develop simple, yet performant methods to
implement point, range and nearest-neighbour queries.

3.4 Matching

Computing the similarity between a hand-sketched
query and all drawings in a database can entail
prohibitive costs especially when we consider large sets
of drawings. To speed up searching, we divide our
matching scheme in a three-step procedure as shown in
Figure 3. The ®rst step searches for topologically similar
drawings, working as a ®rst ®lter to avoid unnecessary
geometric matches between false candidates. In the
second step, we use geometric information to further
re®ne the set of candidates. Finally, we apply a
comparison method to get a measure of similarity
between the sketched query and drawings retrieved from
the database.

Our matching procedure ®rst ranks drawings in the
database according to topological similarity to the
sketched query. This is accomplished performing a
KNN query to the topology indexing structure, using
the descriptor computed from the sketched query.
Results returned by the indexing structure represent a
set of descriptors similar (near in the space) to the query
descriptor. Each returned descriptor corresponds to a
speci®c graph or subgraph stored in the topology
database, which will be used in the geometry
matching. This ®rst ®lter, based on topology, reduces
drastically the number of drawings to compare, selecting
only drawings with a high probability of being similar to
the sketched query.

Figure 3 Block diagram for the matching process
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4 FROM DRAWINGS TO DESCRIPTORS

We will now describe with more detail the steps of the
classi®cation component. Drawings get processed
through a set of stages until they are mapped into two
feature vectors, one topological and one geometric.
First, we simplify drawings by eliminating useless
polygons and lines. Then we extract polygons and
compute geometry and topology relationships among
them. Afterwards, these data are combined into a
topology graph, from which we compute a set of
descriptors using spectral information, to insert them
into the main indexing structure (see Figure 4).

4.1 Line and polygon simplification

Our approach includes two drawing simpli®cation steps.
First we simplify vector information. Then we extract
and simplify a set of polygons from these lines.

To simplify the initial set of lines we ®rst apply a snap
rounding algorithm. This is a well known method that
creates ®xed-precision sets of line segments from
arbitrary-precision vectors. In our approach, we use
this method not only to ensure a ®nite-precision
approximation to the original drawing, but also to
produce a simpli®ed version, where small segments are
discarded.

The algorithm described herein uses the method
recently proposed by Haperin and Packer (2002), which
is based on the method presented by Hershberger et al.
(1997). Either approach preserve the topological
properties of the original line segments, which is
important for our content-based retrieval approach.
After snap rounding and intersection removal our
algorithm identi®es line segments that are not part of
any polygon. These are line segments whose endpoints
do not coincide with any other segment extremities.
These segments are then discarded.

Polygon simpli®cation aims to discard small polygons,
which are usually irrelevant to the description of the
drawing. A polygon is considered small if either its area
or bounding box fall below given thresholds. Such
polygons which are not adjacent to any others get
removed.

When small polygons are adjacent to other polygons
it is necessary to analyse the context where they lie. If a
small polygon is inside and adjacent to other polygon it
can be simply discarded. If it is both outside and
adjacent, then both polygons are merged. This avoids

discarding sets of adjacent small polygons. When several
polygons are adjacent to a small one, we merge the two
that cause the least change in geometric properties.

4.2 Polygon identification

Our algorithm for polygon detection is divided in to ®ve
major steps. First, we convert the initial drawing or
sketch in a set of line segments and simplify those.
Second, we detect line segment intersections and remove
them by replacing intersected segments by their
subsegments that contain no intersections. The third
step creates a graph induced by the non-intersecting line
segments, where nodes represent endpoints or proper
intersection points of original line segments and edges
represent its subsegments. The fourth step computes the
Minimum Cycle Basis (MCB) of the induced graph.
Finally, we construct a set of polygons from cycles in the
MCB and discard small polygons.

In the remainder of this section we describe in-depth
all these steps and discuss how they convert line
segments into polygons, while a detailed description of
used algorithms can be found in Ferriera et al. (2003).

4.2.1 Conversion to lines
A technical drawing or a sketch is usually stored in
vector format, using primitives such as lines, polylines,
arcs and others. However, this plethora of entities is not
supported by simpler algorithms, designed to work
polylines. In our approach, we convert all such entities
to sets of lines. In this way, any drawing or sketch is
transformed into a set of line segments.

4.2.2 Intersection removal and graph construction
In a vectorial drawing composed by line segments there
may exist many intersections between these segments
(see Figure 5(a)). To detect polygonal shapes we have to
remove proper segment intersections, thus creating a
new set of lines in which any pair of segments share at
most one endpoint. To that end, we start by detecting all
intersections between line segments in a plane. The
solution devised by Bentley and Ottmann (1979) to this
problem is still widely used after more than 20 years in
many practical implementations, because it is both easy
to understand and implement (Hobby, 1999; O'Rourke,
1998).

To ®nd and remove intersections, we use a robust and
e�cient implementation of the Bentley±Ottmann
algorithm, described by Bartuschka et al. (1977). This

Figure 4 From drawings to descriptors block diagram
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computes the planar graph G induced by a set of line
segments � (see Figure 5(b)). In this implementation,
vertices of G represent endpoints and proper intersection
points of line segments in �. The edges of G constitute
the maximal relatively open subsegments of lines in �
that do not contain any vertices of G. The major
drawback of this method lies in that parallel edges are
generated in the graph for overlapping segments.
However, � contains no such segments, since they
were already removed during line set simpli®cation.

4.2.3 MCB ®nding and polygon detection
Detecting polygons is similar to ®nding cycles on the
induced graph G. Unfortunately, the total number of
cycles in a planar graph can grow exponentially with the
number of vertices (Mateti and Deo, 1976). Therefore, it
is not feasible to detect all polygons that can be
constructed from a set of lines. Our method detects
the minimal polygons.

These have a minimal number of edges and cannot be
constructed by joining any other minimal polygons.
Given this, we just need to search for the Minimum
Cycle Basis of graph G.1 Horton presented the ®rst
known polynomial-time algorithm to ®nd the MCB of a
graph in 1987 (see also Hartvigsen and Mardon, 1994).
While asymptotically better solutions have been
published, we decide to use it, since Horton's
algorithm is both simple and usable for our needs.
Figure 6(a) shows an example of cycle basis ÿ, resulting
from applying Horton's algorithm to graph G as shown
in Figure 5(b). From the MCB previously computed and

using the geometric information stored on each node of
the graph, we construct a set � of polygons. Figure 6(b)
presents the resulting polygons thus identi®ed.

Applying these algorithms leads to a set of polygons
with the smallest number of edges. However, for our
approach we do not need such minimal polygons. We
rather prefer to have predictably consistent results by
applying the method to similar inputs as shown in
Figure 7, where the two examples presented illustrate
two di�erent results for apparently similar situations. In
one case (top) we have adjacency between polygons
while on the other case (bottom) we have inclusion. To
overcome this we developed an heuristic that privileges
adjacency between polygons, by avoiding inclusion of
adjacent shapes (Figure 7, bottom right).

After isolating a polygon, we extract a set of
topological relationships among identi®ed polygons
into a topology graph (see Figure 2, right), where each
node represents a polygon, while links represent
topological relationships.

(a) (b)

Figure 5 (a) Set � of line segments. (b) Graph G induced by �

(a) (b)

Figure 6 (a) Minimum cycle basis ÿ of graph G. (b) Set � of polygons detected from �

Figure 7 Detected polygons and ®nal result after applying the
heuristic for coherence
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4.3 Topology graph

Content-based retrieval systems use information
extracted from objects and spatial relations between
them. Thus spatial information presented in drawings
should be preserved during the classi®cation process so
that users can easily retrieve those from the database.

Spatial relationships may be classi®ed into directional
and topological relations. The most frequently used
directional relationships are north, south, east, west,
northeast, northwest, southeast and southwest. For
topological relationships Egenhofer presented a set of
eight relations between two planar regions, namely
disjoint, contain, inside, meet, equal, cover, covered-by
and overlap, as illustrated in Figure 8 (Egenhofer, 1989;
Egenhofer and Al-Taha, 1992).

We decided to restrict topological relationships to
those that are independent of translations and rotations
of drawings, and directional relationships do not
guarantee that. Moreover, to both make our approach
less restrictive and the topology graph simpler, we
simpli®ed the topological relationships de®ned by
Egenhofer, starting from his neighbourhood graph for
topological relationships, depicted in Figure 9 (left). Our
set of topological relationships groups neighbour
relations, yielding three topological relationships
between two polygons ± disjoint, include and adjacent
(see Figure 9 (right)). Topological relationships extracted
from drawings are then compiled in a Topology Graph,
where `vertical' edges mean include and `horizontal'
connections mean adjacent (see Figure 2).

4.4 Descriptor computation

Graph isomorphism is a well-known NP-complete
problem. In order to avoid computing the isomorphism
between topology graphs, we reduce this problem to the
computation of distances between descriptors. Topology
graphs get mapped into a multidimensional vector. It is
in this n-space that we perform nearest neighbour
queries to ®nd associated similar graphs. In this
manner, topology alone is used as a discriminating
index to reduce the number of candidate results.

In the remainder of this subsection, we present a new
approach to describe drawings using topology graphs,
graph spectra (eigenvalues) and levels of detail.

4.4.1 Multilevel description
Our multilevel approach is based on topology graphs.
These get divided into di�erent levels, where each level
corresponds to a speci®c degree of detail. Figure 2 shows
a sample drawing and its topology graph. Using
multilevel descriptions, we can identify three di�erent
graphs, as illustrated in Figure 10. As we can see, each
graph corresponds to a speci®c degree of detail from the
drawing. If we compute a descriptor for each of the
three graphs, we end up with three di�erent ways to
search for the current drawing, using more or less
detailed information about the drawing. This approach
has the merit to allow classifying subparts of drawings
by computing descriptors for the corresponding
subgraphs of the main graph. Figure 11 illustrates the
subgraphs thus extracted and their corresponding part

Figure 8 Topological relationships

Figure 9 Topological relationships originally de®ned by Egenhofer (left) and our simpli®ed version (right)
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of the drawing. We recursively apply the description by
levels of detail to these subgraphs. The result of this
process is a set of graphs and subgraphs that describe
both the topology at di�erent levels of detail and the
di�erent subparts of a drawing.

4.4.2 Graph spectrum
Spectra are used to convert graphs into vector descriptors
that can be manipulated using a multidimensional
indexing structure (Cvetkovic et al., 1997). The spectrum
of a graph is calculated from the eigenvalues of its
adjacency matrix.

According to Cvetkovic et al. (1997) and Shokoufandeh
et al. (1999) the use of eigenvalues (spectrum) of a
graph as an indexing method is valid since: it captures
local topology; is invariant to subgraph reorder; and is
stable, since small changes in the graph produce little
changes in its spectrum. However, resulting descriptors
are not unique. More than one graph can have the
same spectrum, which gives rise to collisions similar to
these in hashing schemes. In Shokoufandeh et al.

(1999) the authors argue that these collisions occur
rather infrequently, a claim seemingly veri®ed by our
experiments.

Figure 12 presents the block diagram for computing
the topology descriptor. First, we compute the
adjacency matrix of the graph, second we compute its
eigenvalues and ®nally we sort the absolute values to
obtain the topology descriptor. Adjacency matrices are
symmetric, assuring that eigenvalues are always real.

4.4.2.1 Experimental comparison
While previous work by Shokoufandeh et al. (1999) is
also based on eigenvalues, they sum these to reduce the
dimension of data rather than using eigenvalues by
themselves. This is because e�cient indexing structures
for high dimensional data points were not used, which
make neighbour queries rather expensive, degenerating
into sequential search for high-dimensional data.

We performed experimental tests to compare our
approach to Shokoufandeh's. To that end we ®rst
created a small set of similar topology graphs with little
di�erences from each other. In a second step, we
randomly generated 100,000 topology graphs and then
computed descriptors for each using both methods (this
time we did not compute descriptors either by levels of
detail or for each subgraph). We inserted the resulting
descriptors into two di�erent indexing structures (one
for each method). From the set of original graphs we
selected one at random to be used as query and
computed the corresponding descriptor. Then, we used
this descriptor to perform a KNN query K � 10) to both
indexing structures (using the Euclidean distance) and
analysed results. Experimental evidence reveals that
using the sum of eigenvalues yields higher collision

Figure 10 Di�erent levels of detail and the correspondent graphs

Figure 11 Subpart of the drawing with two levels of detail and
the correspondent graphs

Figure 12 Block diagram for topology descriptor computation
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frequency than when we use the eigenvalues themselves.
Further, precision performance is higher for our method.
In our approach, nine out of ten neighbours retrieved
from the set of 100,000+ graphs belong to the original
set, whereas in the case of the sum of eigenvalues only
seven `correct' descriptors were recovered.

Still, it is important to note that the use of all
eigenvalues do not assure the unity of descriptors, i.e. we
can have di�erent graphs with the same descriptor.
However, there seem to be less collisions than using
Shokoufandeh's approach.

5 EVALUATION AND EXPERIMENTAL RESULTS

As previously discussed, content-based retrieval of
drawings comprises two phases. We have described
classi®cation, which analyses and converts drawings into
logical descriptors. In matching we try to ®nd similar
drawings within a set of such descriptors. Whereas the
critical step in classi®cation (using our approach) is
polygon detection from a set of lines, in matching nearest
neighbour search dominates the resources consumption.

In the next subsections we present experimental
results for our polygon detection algorithm, shape
representation, indexing structure and query processes.

5.1 Polygon detection

Our polygon detection algorithm was tested on an Intel
Pentium III @ 1GHz running Windows XP and with
512MB of RAM. We tested the algorithm using sets of
line segments from simple test drawings, technical
drawings of mechanical parts and hand sketches.
Table 1 summarises the results from these tests. The
complexity of a drawing is de®ned by the number of
lines that compose it, after converting arcs, circles and
polylines into line segments.

From these results, we can conclude that performance
is acceptable for online processing in sets with less than

300 lines, which is the case of hand-sketched queries or
small-size technical drawings. For drawings with a
number of lines around 2500, the algorithm will take
more than 20min to detect all polygons. However, this
approach remains a viable solution if we consider batch
processing for indexing medium to large-size technical
drawings.

5.2 Indexing structure

In this section, we brie¯y describe experimental
comparison of our indexing structure (NB-Tree) to the
most popular approaches available, such as the SR-Tree
(Katayama and Satoh, 1997), the ATree (Sakurai et al.,
2000) and the Pyramid Technique (Berchtold et al.,
1998). All experiments were performed on a Intel
Pentium II @ 233MHz running Linux 2.4.8 and with
384MB of RAM. More detailed reports can be found in
Fonseca and Jorge (2003a,b).

Figure 13(a) depicts the performance of nearest
neighbour searches for synthetic data sets of uniformly
distributed data points, when data the dimensions
increase. We can see that the NB-Tree outperforms all
the structures evaluated, for any characteristic
dimension of the data set. Moreover, we can notice
that the NB-Tree shows linear behaviour with the
dimension (with a low multiplicative factor), while the
SR-tree and the A-Tree seem to exhibit at least
quadratic growth or worse. Figure 13(b) shows that
the NB-Tree also outperforms all the surveyed
structures for K-NN queries when the size of the data
set increases.

We also evaluated our indexing structure in two more

Table 1 Time needed to identify polygons as a function of
number of lines

Number of lines 6 36 167 286 518 872 2507

Time (sec) 0.01 0.05 4 9 37 129 1333

(a) Data set size of 100,000 points (b) Data points of dimension 20

Figure 13 Search times for K-NN as a function of (a) dimension; (b) data set size
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experiments where we tried to simulate our domain of
application. To that end, instead of generating descriptors,
we generated topology graphs and we computed the
corresponding descriptors. First, we randomly generated
100,000 topology graphs. Then, we computed descriptors
for those graphs using our multilevel scheme (i.e. we
compute descriptors for subgraphs and for di�erent
levels of detail) and not using it (i.e. one descriptor for
each topology graph). Table 2 summarises the results for
a KNN query with K � 10. The times presented in the
table are average ®gures obtained from performing 100
KNN queries.

Table 2 shows that our indexing scheme outperforms
current approaches for many data distributions. Our
indexing structure seems to scale better both with
growing dimensionality and data set size, while
exhibiting low insertion and search times, making it a
good choice for interactive applications where timely
feedback is required.

5.3 Shape representation

In order to evaluate the retrieval capability (i.e. accuracy)
of our method, we measured recall and precision
performance ®gures using calibrated test data.
Information retrieval de®nes recall as the percentage
of similar drawings retrieved with respect to the total
number of similar drawings in the database. Conversely,
precision is the percentage of similar drawings retrieved
with respect to the total number of retrieved drawings.

We compared our method to describe shapes (CALI)
with four other approaches, namely Fourier descriptors
(FD), grid-based (GB), Delaunay triangulation (DT)
and Touch-point-vertex-angle-sequence (TPVAS). To
that end we used results of an experiment previously

performed by Safar et al. (2000), who compared their
method (TPVAS) with the FD, GB and DT methods. In
that experiment, the authors used a database containing
100 contours of ®sh shapes.2 From the set of 100 shapes
in the database, ®ve were selected randomly as queries.
Before measuring the e�ectiveness of all methods, Safar
performed a perception experiment where users had to
select (from the database) the 10 most similar to each
query. This yielded the 10 most perceptually similar
results that each query should produce.

We repeated this experiment, using the same database
and the same queries, using our method. First, we
computed descriptors for each of the 100 shapes in the
data set and inserted them in our indexing structure
(NB-Tree). Then for each query, we computed the
correspondent descriptor and used it to perform a
nearest-neighbour search in the NB-Tree. Returned
results are in decreasing order of similarity to the
query. For each of the ®ve queries, we determined the
positions for the 10 similar shapes in the ordered
response set. Using results from our method and the
values presented in Table 2 from (Safar et al., 2000), we
derived the precision-recall plot shown in Figure 14.

Looking at Figure 14 we can see that our technique
outperforms all the other methods, yielding good
precision ®gures for recall values up to 50%.

Table 2 Search times for descriptors generated from
topology graphs

Descriptor
type

No of
descriptors

Max. descriptor
dimension

Time
(sec)

Without levels 100,000 333 0.05

With levels 1,524,000 333 1.25

Figure 14 Recall-precision comparison
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5.4 Drawing retrieval

Using the techniques described in this paper, we have
developed a prototype to retrieve technical drawings.
Our system allows retrieving sets of drawings similar to
a hand-sketched query. Figure 15 depicts a screen-shot
of our application. On the left, we can see the sketch of a
plate and on the right the results returned by the implied
query. These results are ordered from top to bottom and
from left to right, with the most similar on top.

In order to assess acceptance and recognition-level
performance, we conducted preliminary usability tests
involving three draftspeople working in the mould
industry. Subjects performed di�erent sketching tasks
to search for a set of drawings using our prototype. For
these tests, we used a database of 32 sample technical
drawings from mould plates plus 40 simple drawings,
yielding a total of 72 ®gures. These drawings were
classi®ed using our multilevel scheme to produce
descriptors for each level of detail and for each
subpart. Resulting descriptors were then inserted in a
database using our NB-Tree.

Notwithstanding the low number of users involved,
preliminary results are very encouraging. Indeed, for the
majority of the queries, drawings sought were found
among the topmost ®ve results and could almost always
be found within the top ten results. These 26 results gave
some con®dence to users. Even though we used a small

database in our tests, our approach has the potential to
deal with large sets of drawings. The indexing structure,
that could prove the main bottle neck during retrieval,
has shown good performance for datasets around one
million elements, as illustrated in Figure 13 (right) and
in Table 2.

Another measure used to evaluate our prototype was
the number of sketches necessary to retrieve the desired
drawing. In the majority of the cases users obtained a
successful result after the ®rst sketch. However, there were
situations where users had to repeat the initial sketch.
Only once a user needed to attempt a query three times.

To be useful, a SBR system must provide good results
on short notice. We measured the total time including
sketching and query execution on a Tablet PC (Pentium
III @ 800MHz, running Windows XP with 256MB of
RAM). Query execution proper took from 2±10 sec,
while the total time for users to draw the sketch and
obtain results was less than 1min, in most cases.

One of the things that we observed during the
execution of tasks was that users did not care about
where in the order of retrieval the intended drawing
appears, the important fact being that it was there. One
of the users produced this comment `It [the SBR system]
found it [the drawing]! That is what counts!'

In summary, users liked the interaction paradigm
very much (sketches as queries), were satis®ed with
returned results and pleased with the short time they had

Figure 15 Sketch-based retrieval prototype
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to spend to get what they wanted, in contrast to more
traditional approaches.

From users' comments and suggestions, and from our
observations, we are improving our prototype and
algorithms. We plan to test the new version of the
prototype with a larger number of users and with a
larger database of drawings, to get more supported
results and conclusions.

6 CONCLUSIONS AND FUTURE WORK

We have presented a generic approach suitable for
content-based retrieval of structured graphics and
drawings. Our method hinges on recasting the general
picture matching problem as an instance of graph
matching using vector descriptors. To this end we
index drawings using a topology graph which describes
adjacency and containment relations for parts and
subparts. We then transform these graphs into
descriptor vectors in a way similar to hashing to
obviate the need to perform costly graph-isomorphism
computations over large databases, using spectral
information from graphs. Finally, a novel approach to
multidimensional indexing provides the means to
e�ciently retrieve sub-drawings that match a given
query in terms of its topology.

We described in detail the overall process to compute
descriptors from drawings, using an algorithm to detect
all minimal polygons from a set of lines in polynomial
time and space, through a combination of well-known
and simple to implement algorithms to perform line
segment intersection detection and to ®nd a MCB of a
graph. Additionally, we presented a new multilevel method
to describe drawings, using level of detail and partial
matching. This scheme computes several descriptors for
the same drawing, allowing retrieval either by partial
matching or by coarse speci®cation of queries. This
method is also applicable to query-by-example, without
modi®cations.

We have also used our approach to develop a
Sketch-Based Retrieval system for ClipArt drawings
(Fonseca et al., 2004). Although this is another domain
of application, where the geometric information is more
relevant than topology, experimental evaluation yielded
good results with a larger database (1000 drawings and
query times under 10 sec), which shows good promise
and atests to the scalability of our approach.
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NOTES

1 A cycle basis is defined as a basis for the cycle space of G
which consists entirely of elementary cycles. A cycle is
called elementary if it contains no vertex more than once.

2 This database is available from ftp://ftp.ee.surrey.ac.uk/
pub/vision/misc/fish contours.tar.Z.
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